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Abstract

We achieve tomography of 3D volumetric natural ob-

jects, where each projected 2D image corresponds to a

different specimen. Each specimen has unknown random

3D orientation, location, and scale. This imaging sce-

nario is relevant to microscopic and mesoscopic organ-

isms, aerosols and hydrosols viewed naturally by a micro-

scope. In-class scale variation inhibits prior single-particle

reconstruction methods. We thus generalize tomographic

recovery to account for all degrees of freedom of a similar-

ity transformation. This enables geometric self-calibration

in imaging of transparent objects. We make the computa-

tional load manageable and reach good quality reconstruc-

tion in a short time. This enables extraction of statistics

that are important for a scientific study of specimen popu-

lations, specifically size distribution parameters. We apply

the method to study of plankton.

1. Introduction

The environment is teeming with microscopic and meso-

scopic objects, whose study both structurally and as a popu-

lation is central to science [39]. Examples include aerosols,

hydrosols, and small organisms which have wide varieties

of classes. It is possible to take samples to a lab and measure

their 3D statistics, while they are few and sit still. However,

such an approach has drawbacks. In a lab, organisms do

not behave as in nature. To minimize biasing nature, in-situ

microscopes are used, as illustrated in Fig. 1. There, and

also in many lab studies, specimens do not sit still. Hence

each image is of a different specimen at random orienta-

tion, scale, and location. Moreover, as there is a priority on

gathering large data, time may not be allocated to scan each

of the specimens in 3D using common microscopic meth-

ods. Due to the randomness of projection of volumetric ob-

jects, the data are not well amenable to 2D image analysis.

Thus, manual labor is used, greatly limiting the statistical

and structural understanding of nature. Consider plankton

(Fig. 2), mesoscopic organisms which are a fundamental

building block in the oceanic food chain. Their population

state is indicative of climate changes and the state of the

marine eco-system [17]. In-situ microscopes [39,40] give

Figure 1. A random set of moving organisms at different orienta-

tions and scales is imaged using a submerged microscope. Statisti-

cal tomographic reconstruction yields self-calibrated estimation of

the 3D density map, along with the unknown orientation and scale

of each sample. Estimation of the population’s size-distribution is

thus enabled, jointly with 3D recovery (3D-POP). Microscope 3D

model courtesy of Jaffe Lab.

high-temporal resolution in 2D [1,15], while 3D imaging of

fixated plankton is done in the laboratory [22,27].

To address these challenges, we seek in-situ volumetric

recovery and natural population statistics. In the case of bi-

ological specimens, this can provide high-quality estimates

of bio-mass [38] and size-distributions [6]. The idea is to

use an ensemble of 2D images, each of a different speci-

men, and recover all that is needed based on this random

data. Our aim is to recover a statistical 3D tomography of

microscopic life. Unlike common computational tomogra-

phy [16,18,22] the images acquired are uncalibrated: the

rotation, scale, and locations of the specimens are random

and unknown.

We build on Single Particle Reconstruction (SPR) [12].
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Figure 2. In-situ images of Pyramimonas Longicauda, from

the Woods Hole Oceanographic Institute annotated plankton

dataset [46]. Each organism has a different orientation and pos-

sibly scale, however, there is 3D structural resemblance.

In Cryo-Electron Microscopy (Cryo-EM) [25,34,52], mul-

tiple replicas of a molecule of a particular class are frozen.

Each molecule has a random unknown orientation. Organ-

isms, however, have greater variations within a class. The

most dominant variation is scale. These variations cause

typical SPR algorithms to fail when applied to biological

ensembles. The task defined in this work is estimation of

the scale of each sample, in conjunction with the orienta-

tion and locations, as part of the volume recovery process.

As this task seeks recovery of 3D structure and the size-

distribution of a population, we denote it 3D-POP.

Meeting this challenge is computationally demanding.

However, it has become feasible with increasing computing

power. This feasibility is similar to enabling of other com-

plex computer vision inverse problems, involving multiple

reflections, non-line-of-sight imaging [5,7], scattering me-

dia [19,21,23,24,28,29,51] and blind estimation [32,47,48].

In a sense, we tackle a problem of self-calibration and 3D

scene recovery. These topics were usually dealt in the con-

text of opaque objects [2,35]. Under the microscope, how-

ever, many interesting organisms are transparent [20,33],

hence we need to generalize self-calibration to multi-view

imaging of transparent objects.

2. Theoretical Background

Computational tomography (CT) estimates a volumetric

density distribution using multi-view projections. This sec-

tion describes core concepts of tomographic recovery and

orientation estimation using projections.

2.1. Tomography Using Known Orientations

Denote 3D spatial coordinates by x=(x1, x2, x3)
T,

where (·)T denotes transposition. The orientation of a sam-

ple with volumetric distribution β(x) is defined by a 3D ro-

tation matrix R. This rotation is relative to the microscope

reference frame. Define a projection operator of a rotated

sample as

PR (β) (x1, x2) =

∫

β
(

R−1x
)

dx3. (1)

Here x3 is the integration axis and x1, x2 are the image axes.

Denote a set of N orientation matrices as

Ω= {R1, ...,RN} . (2)

The sets of measured and modeled projections cor-

responding to the orientations are yΩ= {y1, ...,yN}
and PΩ(β)= {PR1

(β), ..., PRN
(β)}, respectively. To-

mographic reconstruction seeks minimization of a re-

projection cost

β̂(x) = argmin
β
{D [yΩ, PΩ (β)] +R(β)} , (3)

whereR is a regularization term that expresses prior knowl-

edge about β, while D is a data (fidelity) term. The partic-

ular choice of the functionals R and D affects the solution

and its computational speed.

2.2. Orientation Estimation

In most tomography applications, the rotation set Ω is

known. This is not the case in SPR or our problem do-

main: specimen appear at arbitrary, unknown orientations

in the projection imaging system. Here, 3D reconstruction

of β becomes coupled to the estimation of Ω. SPR ap-

proaches are roughly divided into two classes of algorithms:

reference-free and iterative refinement [11]. Iterative refine-

ment methods use an initial {β(x),Ω}, then gradually ad-

just this set of unknowns to fit the data and priors similarly

to Eq. (3). This process is computationally complex [8],

thus slow.

To succeed in practice, a good initialization is required.

Such initialization is provided using reference-free recon-

struction, which is dramatically faster: Ω is derived without

explicit recovery of β(x), and afterwards β(x) is estimated

in a single step. Due to the computational advantage, our

work focuses on a reference-free approach. The result can

subsequently serve as initialization for improvement. The

background for reference-free SPR is thus detailed.

Denote a 3D spatial frequency by k=(k1, k2, k3). The

3D Fourier transform of the volumetric object is

F {β} (k) =
∫

β(x)e−2πix·kdx, (4)

where i=
√
−1. A central slice is a frequency-plane in

the 3D Fourier space, that passes through the origin, k=0.

For example, the domain of a horizontal frequency-slice is

[k1, k2, 0]
T, ∀k1, k2∈R. The domain of any central slice

can be written in terms of a rotated horizontal slice,

R−1[k1, k2, 0]
T. (5)

Figure 3 illustrates two central slices in 3D Fourier space

(3D k-space). They intersect at a common tilt axis, also

termed common line.

The 3D Fourier transform of a volumetric object and the

2D Fourier transform of any projected image of this object
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common tilt axis

3D k-space

(common line)

Figure 3. Two central slices in the 3D Fourier domain. Blue repre-

sents the coordinate system of ỹn. Red represents the coordinate

system of ỹm. The slices intersect at a common tilt axis (common

line). It is perpendicular to the direction-vector of either projec-

tion.
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Figure 4. Illustration of two main concepts: projection and the

central-slice theorem (Eq. 6). The 2D Fourier transform of any

projected image of a rotated object, F {PR (β)}, is equivalent to

the 3D Fourier of the volumetric object, sampled on a central slice

in the frequency domain.

are related by the Central-Slice Theorem [41] (Fig. 4).

F {β}
(

R−1[k1, k2, 0]
T
)

= F {PR (β)} (k1, k2) (6)
[

3D Fourier sampled on a

rotated central slice

]

=

[

2D Fourier of a

rotated projection

]

This theorem is at the core of Fourier-based tomography. It

is also a key for orientation estimation, based on the follow-

ing common-line theory.

ψm
→
ncmn

ψn→m

cnm

ỹn(ρ, ψ)

2D k-space of

ỹm(ρ, ψ′)

2D k-space of

Figure 5. A pair of central slices in the 3D Fourier domain are

equivalent to a pair of 2D Fourier images of the projected image

data. The common line is realized in the Fourier images by a line

at angles ψn→m and ψm→n according to the coordinate system.

Define polar coordinates

x1 = r cos θ k1 = ρ cosψ (7)

x2 = r sin θ k2 = ρ sinψ. (8)

The 2D continuous polar Fourier transform [13] is

F {f} (ρ, ψ) =
π
∫

π

∞
∫

0

f(r, θ)e−2πirρ cos(ψ−θ)rdrdθ. (9)

Let yn,ym be the n’th and m’th projected measured im-

ages. Respectively, denote the polar Fourier transform of

each image by ỹn(ρ, ψ) and ỹm(ρ, ψ′). According to (6),

each empirical Fourier-image ỹn is equivalent to a central

slice of the 3D Fourier representation of an object. Recall

that a slice-pair intersects in a common line. This com-

mon line thus appears, theoretically, both in ỹn(ρ, ψ) and

ỹm(ρ, ψ′), for particular angles ψ=ψn→m and ψ′=ψm→n

(Fig. 5). The angles ψn→m, ψm→n partly indicate the rela-

tive orientation of the two projections.

Define 2D unit row vectors (Fig. 3)

cnm = [cosψn→m, sinψn→m] , (10)

cmn = [cosψm→n, sinψm→n] . (11)

Recall from Eq. (1), that the matrices Rn, Rm express ro-

tation relative to the microscope reference frame. These are

the matrices we seek to recover. They satisfy [52]

[cnm, 0]
T = R−1

n Rm[cmn, 0]
T. (12)

If the pairwise angles ψn→m, ψm→n are known

(i.e. cnm, cmn are set) then Eq. (12) is a constraint on the

relative 3D rotation between the 3D specimen that had

yielded the measured images yn,ym. Note that Eq. (12)

is invariant to a global rotation of the microscope frame

by matrix O, i.e., Rm → ORm and Rn → ORn. Thus

O is unresolvable. Furthermore, Fourier measurements

on the common line are also invariant to any rotation of

either Fourier central-slice about the common-tilt axis (see

Fig. 3). Hence (12) is not sensitive to a degree of freedom,
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which is the relative rotation angle around the common-tilt

axis [50]. However, if three images (projections) are used,

this degree of freedom is generally resolved [50].

Let there beN ≥ 3 measured images. Their transformed

set of Fourier-images is ỹn(ρ, ψ)≡F {yn} , n=1, ..., N .

Based on the pairwise linear constraints as (12), all rota-

tions are estimated by

R̂1, ..., R̂N = argmin
R1,...,RN

∑

n 6=m

‖Rncnm −Rmcmn‖22 (13)

s.t. RnR
T
n=I, det(Rn)=1, n = 1, ..., N.

Here I is a 3×3 identity matrix. Due to non-convexity of

Eq. (13), a solution based on relaxation [52] is employed.

Pairwise Commonline Detection

Recall that Eq. (13) assumes ψn→m is known ∀n,m.

This means that a common line first has to be identified

in the 2D Fourier images taken from the observed data.

We describe a common method for common-line detection.

In both Fourier images ỹn, ỹm, consider pairs of radial

lines parameterized by the angles ψ, ψ′. Define a cross-

correlation function, based on the inner product between

ỹn(ρ, ψ), ỹm(ρ, ψ′):

Σnm(ψ, ψ′) =

ρmax
∫

−ρmax

ỹ∗
n(ρ, ψ)ỹm(ρ, ψ′)dρ. (14)

Here ρmax is the radial frequency cap. Common-line de-

tection can be achieved [52] by maximizing the normalized

cross-correlation
[

ψ̂n→m

ψ̂m→n

]

= argmax
ψ,ψ′

Σnm(ψ,ψ′)
√

Σnn(ψ, ψ)
√

Σmm(ψ′, ψ′)
. (15)

Equations (13,14,15) derive the set Ω (Eq. 2), without ex-

plicit tomographic reconstruction of β.

3. Scale and Shift Estimation

Unlike molecules of a particular material, organisms of

the same genus usually exhibit great variability in size. This

leads to failure of typical object-free approaches, which fun-

damentally rely on Eqs. (14,15). Applying an SPR [52] ap-

proach to synthetic data, without scale estimation, results in

a poor recovery due to an inability to detect common lines.

We demonstrate this in simulations using a biologically-

realistic spatial distribution model. The model was attained

by 3D imaging in the lab of a real organism: a Hydra

polyp (Fig. 6). Its length is in the order of a hundred mi-

crons. It was acquired with a fluorescence light sheet micro-

scope [31], which fast scans the 3D object. We took the 3D

volumetric data and computationally projected it onto 100
orientations, simulating random uniform orientation sam-

pled on the unit sphere. Each projection of size 200×200

Ground Truth β

Simulated Projections

Figure 6. A Hydra polyp volume, observed in 3D, is randomly

shifted, scaled and projected onto 100 random orientations, shifts

and scales (Eqs. 16, 17). A subset of the projections is displayed.

Recovered density β̂ Orientations Scatter Plot

β̂

β

β̂

β

S
P

R
3

D
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O
P

Figure 7. [Top] An SPR recovery [52] without scale estimation.

From left to right: A 3D density map with a correlation coefficient

of ∼0.56 compared to ground-truth volume. For visualization, the

recovered density is cut-off at β < 0.1. Ground-truth (green) and

estimated (red) orientations on the unit sphere. A diluted scatter

plot (randomized 10% of data). [Bottom] 3D-POP recovery. The

correlation coefficient is ∼0.94.

pixels is then scaled and shifted uniformly (Fig. 6)

shift ∼ U (−10, 10) [pixels], (16)

loge(scale) ∼ U (−0.7, 0.7) . (17)

This sampling results in a scale difference of ×4 between

the largest and smallest Hydra length. After drawing sam-

ples, the computed numerical mean of log(scale) was sub-

tracted to give a zero mean distribution.

To further realistically emulate imaging, photon (Pois-

son) noise statistics are synthetically applied. Here, it is as-

sumed that in the simulated imaging system, each pixel has

full-well depth of 10000 photoelectrons. Hence the data has

peak signal to noise ratio (SNR) of 100 (40db). A standard

SPR recovery fails due to an inability to detect common

lines (Fig. 6 [Top]).

For our objective, we must estimate the scale Mn of the

object that appears in projectionm. Had all observed organ-

isms included a known spherical feature, then each image

would have included a projection of the sphere, indicating

Mn, ∀n. However, in general, an organism has a complex

structure and an anisotropic aspect ratio. Hence, we must

rely on the multi-view data to jointly derive the scales (and

rotations) of all individual organisms, each of which is pro-

jected only once. A scale Mn results in an inverted scale in
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the Fourier domain. We use this insight to generalize pair-

wise common-line detection.

Furthermore, organism samples are generally not cen-

tered consistently in images that are empirically acquired

at random. Therefore, any projection of an object may be

shifted by an unknown 3D offset τn. An orthographic pro-

jection yn is invariant to the component of τn along the pro-

jection axis. Let us focus on the complementing plane offset

in 2D, τ 2D
n . In the 2D Fourier domain an offset creates a lin-

ear phase 2π[k1, k2]
Tτ 2D

n . This phase, as described below,

can be inferred from the data.

Equations (14,15) mean that for a Fourier pair,

ỹn(ρ, ψn→m), ỹm(ρ, ψm→n) the common line has match-

ing content on a 1D domain −ρmax ≤ ρ ≤ ρmax. Since

relevant content is only on the common line (i.e. a function

of ρ), then only the linear-phase component of τ 2D
n along

this line affects content for matching. The effect is a linear

phase difference, 2πρτ , where τ is a scalar-offset.

Denote a relative scale and offset between ỹn and ỹm as

Mn→m and τn→m, respectively. Let us generalize Eq. (14)

to

Σnm(ψ, ψ′,M, τ) =
ρmax
∫

−ρmax

ỹ∗
n

( ρ

M
,ψ

)

ỹm(ρ, ψ′)e2πiρτdρ. (18)

Eq. (15) is then generalized to

{ψ̂n→m, ψ̂m→n, M̂n→m, τ̂n→m} =

argmax
ψ,ψ′,M,τ

Σnm(ψ, ψ′,M, τ)
√

Σnn(ψ,ψ,M, τ)
√

Σmm(ψ′, ψ′,M, τ)
. (19)

The discussion of how we practically solve Eq. (19) per pair

m,n is deferred to Sec. 4.

For the moment, assume that the set

P = {ψ̂n→m, ψ̂m→n, M̂n→m, τ̂n→m}∀n,m (20)

is given. All these pairwise partial constraints of relative ro-

tations, relative scales and relative offsets on common lines,

are now integrated into a large optimization problem that

seeks all geometric transformations. Fortunately, once the

pairwise constraints are given, the optimization problem is

separable, i.e., scales are recovered separately from offsets,

which are recovered separately from orientations. The lat-

ter is solved using Eq. (13), based on the angles derived in

Eq. (19). We are left with the task of recovering {Mn}Nn=1

and T = {τ 2D
n }Nn=1.

Denote M̄n= loge(Mn), andM={M̄n}Nn=1. Then

M̄n − M̄m = loge(M̂n→m), (21)

where M̂n→m is obtained empirically in the pair-wise op-

timization (19). Compounding constraints as Eq. (21),

∀n,m, creates a linear system of equations. Define a data

term which penalizes for deviations from (21)

Dscale(M) =
∑

n 6=m

∣

∣

∣
M̄n−M̄m− loge(M̂n→m)

∣

∣

∣

2

. (22)

If Mn is inflated to αMn, ∀n for a constant α, then the log

operation and difference in Eqs. (21,22) null the effect of

inflation. Hence, Dscale(M) is invariant to a global scale.

To assist the estimation process lock on a typical scale of

unity, define a regularization term

Rscale(M) =
∑N

n=1
|M̄n|2. (23)

Using Eqs. (22,23), the minimization

M̂ = argmin
M

[

Dscale(M) +Rscale(M)
]

(24)

is solved linearly. The scale of specimen n is M̂n=exp ˆ̄Mn.

The set {τ 2D
n }Nn=1 has 2N unknowns. The pairwise

constraint τn→m is only indicative of the offset component

along the common axis between n,m. Using the row vec-

tors defined in Eq. (10,11), the offset [45] satisfies

ĉnmτ 2D
n − ĉmnτ

2D
m = τ̂n→m. (25)

There are
(

N
2

)

, linear constraints as (25), compounding all

pairs. A solution is obtained using N>5. A data term pe-

nalizes deviation from (25)

Dshift(τ ) =
∑

n 6=m

∣

∣ĉTnmτn − ĉTmnτm − τ̂n→m

∣

∣

2
. (26)

A regularization term favoring minimum average shift is

Rshift(τ ) =
∑N

n=1
‖τn‖22. (27)

Once again, we use regularized least-squares minimization,

τ̂ = min
τ

[

Dshift(τ ) +Rshift(τ )
]

. (28)

Following efficient optimizations (13,24,28), the offsets,

relative scales and rotations of the entire set of specimens

are directly estimated. This is done without explicit to-

mographic recovery of β from unknown specimen parame-

ters. This efficiency relies on the availability of the pairwise

transformation parameters set P , as discussed next.

4. Coarse-to-Fine Parameter Estimation

The pairwise transformation parameters P are the root

of the estimation process. They are a result of Eq. (19), per

pair. The process we use to reach this optimum is described

here. The pairwise parameters interact bidirectionally with

global (inter-pair) estimation (13,24,28), as illustrated in

Fig. 8. The process has the following four elements.

A. Priors: Let Mmax be a maximum scale for a spec-

imen, relative to the population’s mean specimen and

M̄max= loge (Mmax). Let τmax be a maximum offset

of an image relative to the optical axis. The values of

Mmax, τmax are thus parameter priors.
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B. Grid search: Let us discretize the parameter domains.

The angle ψ is in a domain [−180◦, 180◦], discretized to

Nangle values. The angle ψ′∈[0, 180◦] is discretized to

Nangle/2 values. The scale logarithm, M̄ , is in a domain

[−M̄max, M̄max], discretized to Nscale values. The offset τ
is in a domain [−τmax, τmax], discretized to Noffset values.

On the entire set ofN images, exhaustive search of (19) has

computational complexity

O(N2N2
angleNscaleNoffest). (29)

For most specimen, 3D rotation has a strong impact on

the projected appearance. Hence, we prioritize angular

precision by a large Nangle (we used 180) in omnidirec-

tional breadth. Consequently, to keep Eq. (29) manageable,

Nscale,Noffest are small (we used 10 grid samples for each).

Following exhaustive search by Eqs. (18,19), a crude set of

pairwise parameters is obtained, denoted P0. It serves as

initialization to global estimation by (24,28).

C. Global estimation, image correction: Equations (24,28)

are fast to compute. The result is an estimated value

M̂n, τ̂
2D
n , ∀n. Each image yn is corrected for the scale and

offset, being shifted by τ̂ 2D
n and magnified by 1/M̂n. The

corrected image is denoted ycorrect
n .

D. Updated fine grid and images: Global corrections are

used for a refined pairwise search:

• Search domains are updated:

M̄max ← maxn
ˆ̄Mn, τmax ← maxn ‖τ̂ 2D

n ‖2.

• Instead of {yn}Nn=1, the corrected images {ycorrect
n }Nn=1

become the input to pairwise correlations (18,19).

Based on this state, step B. Grid search is run again. This

time, the scale and offset domains have become narrower,

with corresponding finer grids. Hence, this time, the ob-

tained set of pairwise parameters is refined and denoted P1.

Consequently P1 is used in step C, which leads to step D,

and back to B. After several iterations, the process con-

verges to the final scales, offsets and 3D rotations (see Fig. 8

for illustration). In our experiments, we initialized shifts

τ̂ 2D
n as the shift between the image center and center-of-

mass. All scales M̂n were initialized to unity.

Computational complexity: traditional SPR comprises

pairwise estimation (complexity c1) and global optimiza-

tion (complexity c2). We estimate random scales by coarse-

to-fine pairwise search down to resolution δM̄ . An image

ensemble withN images hasO(N2) pairs. Hence, the pair-

wise and global complexities are O
[

c1 log(M̄max/δM )
]

and O(c2+N4), respectively. In practice, 703 voxels took

4 minutes to recover by 100 projections on a computer de-

tailed in Sec. 6 (SPR took 0.7 mins).

5. Pruning Outliers

The analysis thus far assumed that all projected speci-

mens are of the same class, and their relative transformation

Density

Im
age

D
ata

Pairwise Relations
(Find Edges)

Global Estimation
(Find Vertices)

Scale, Translate

Figure 8. A diagram illustrating the coarse-to-fine parameter esti-

mation. Pairwise interactions are the graph edges and the global

parameters are the graph vertices.

is only composed of translation, rotation, and scale (similar-

ity). In practice, the microscope view may be polluted by

various specimens belonging to different classes of organ-

isms having widely different morphology. It is undesirable

for these outliers to affect the tomographic recovery of β
or undermine the estimation P for the main ensemble class.

Even intra-class specimens could have morphological trans-

formations that are non-similar. Images of such specimen

are pruned from the data.

There is an indication if at least one image in an image-

pair n,m is an outlier. The correlation value

Σ̂nm = Σnm

(

ψ̂n→m, ψ̂m→n, M̂n→m, τ̂n→m

)

(30)

has a low value, despite using the best mutual transforma-

tion on a presumed common line. A common line does

not exist reliably there. For the entire ensemble, define and

affinity matrix A, each of whose element is

Anm =
Σ̂nm

√

Σ̂nn
√

Σ̂mm
. (31)

Note that A is symmetric with 0≤Amn≤1. Using spectral

techniques [9], the matrix A is used to partition the data

into clusters. In this work we used a normalized cuts [43]

algorithm to prune outliers and extract the main cluster of

similar in-class organisms.

6. Test using Experimental Data Rendering

We use our 3D-POP approach, outlined in previous sec-

tions, to recover the Hydra polyp (Fig. 6), which was de-

scribed in Sec. 3. A comparison to SPR recovery is in Fig. 7.

Recovered scales are shown in Fig. 9

We quantitively analyze recovery errors (Fig. 6). Rota-

tions are estimated up to a global rotation O, thus the rota-

tional error is defined as

ǫrot =
1

N
min
O

∑N

n=1
‖Rn −OR̂n‖2. (32)
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M

M̂

Figure 9. Recovered scales of the Hydra polyp simulation (Fig. 6),

compared to the ground truth scales.

The scale and density errors are [3]

ǫscale =
1

N
‖M− M̂‖2, ǫdens = ‖β − β̂‖1/‖β‖1. (33)

The resulting errors using 3D-POP were:

ǫrot=2×10−3, ǫscale=3×10−5, ǫdens=0.38. These

errors are much lower than SPR recovery errors, with no

scale estimation, ǫrot=1.96, ǫdens=1.52.

An additional comparison between 3D-POP and SPR

used a synthetic random volume that was created by a fluid

dynamics model [37]. It is shown in Fig. 10. The volume

was projected to 100 random orientations (uniform distri-

bution), each in random scale whose distribution has stan-

dard deviation σscale. In Fig. 10(blue plots), ǫrot for SPR

quickly fails in minor scale variance, while our approach

has very small errors, being robust to σscale. We further as-

sess performance degradation due to non-similarity defor-

mations that compound random scales, translations and ori-

entations. The volume is deformed by β(x)→ β(x+v[x]),
where v=(v1, v2, v3) is a random vector field, defined by

vi = v̂iV L sin [2πxi/(Gi−1) + φi] , i=1, 2, 3 (34)

where V ∼ U(0, Vmax), φi ∼ U(−π, π) and v̂=(v̂1, v̂2, v̂3)
is random-sampled on the unit sphere. Here L is the length

of the object, in voxels, and G1×G2×G3 is the grid size.

In Fig. 10 (red plots), ǫrot of 3D-POP increases moderately

with deformation amplitude Vmax, and much lower than ǫrot
of SPR in un-deformed (only scaled) objects.

Simulations were run run on a 2.50 GHz Intel Xeon, par-

allelized on 20 CPU cores. The steps of estimating the rota-

tions, scales and shifts (Sections 3,4) had overall runtime of

∼10 minutes. Afterward, the volume density β was recov-

ered in a 150×150×150 voxel domain, at run-time of ∼3
minutes, accelerated by an NVIDIA Tesla K40m GPU. For

the 3D recovery step we used an Algebraic Reconstruction

Technique [14,49].

7. Full Microscopy Experimental Recovery

We use 150 images of Pyramimonas Longicauda

(Fig. 2), a microscopic marine plankton, taken from an an-

notated dataset [46]. Each image corresponds to a differ-

ent specimen. These in-situ images ln were captured us-
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Figure 10. [Top] Ground-truth synthetic volume. ǫrot as a func-

tion of σscale (red) and Vmax (blue). The maximal σscale=1.6
corresponds to Mmax=6, thus, a scale difference of up to ×36.

[Bottom] Scatter plots for our approach (3D-POP) and SPR.
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Figure 11. The affinity matrix A found for the plankton data de-

scribed in Sec. 7. Note the shades are inverted relative to Fig. 2,

due to −log
e
(·). Examples of projections that were found to be

similar to extracted cluster are in yellow and an example of a non-

similar sample is in red.

ing a submerged instrument [42], in bright-field transmis-

sion mode. Hence, each pixel value represents transmissiv-

ity. The transmissivity is exponentially related to the optical

density. For consistency with the tomographic linear model,

the images first undergo a log operation, yn=− loge ln, ∀n.

Pruning, described in Sec. 5, is illustrated in Fig. 11. It re-

sulted in a cluster of N=62 images. The image cluster was

used for volumetric recovery. Fig. 12 plots the estimated

rotations and volumetric distribution β.

One of the products of the process is the estimated size of

each specimen. Normalizing the recovered sizes by a mean

cell-size yields a size-distribution of the population. Size

distribution parameters are important in research of under-

lying biological processes [10]. We compute the mean cell
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Figure 12. [Left] The recovered orientations and density distribution of the cluster found in the Pyramimonas Longicauda dataset. The

corresponding projections of the highlighted (red) orientations are shown. Note the shades are inverted relative to Fig. 2, due to −log(·).
[Right] An estimated normalized size-histogram with a fitted log-normal distribution in red.
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Figure 13. In three different cross-validation tests, a 3D volume

is recovered using 61 out of 62 images. The recovered volume is

re-projected onto the left-out estimated orientation, to generate a

synthetic image (bottom row). Each synthetic image is compared

to the left-out input image (top row).
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Figure 14. Recovery of a Heterocapsa triquetra. [Left] Compari-

son of real images and re-projections. [Right] Recovered volume.

size as the diameter of the bounding sphere of each speci-

men. The histogram of the size is shown in Fig. 12, as is the

corresponding fit to a log-normal distribution.

In this experiment, we have no ground-truth. Hence we

perform cross-validation. A single image is left out of the

N=62 ensemble, during tomographic recovery of β. The

estimated β̂ is then reprojected to the estimated orientation

of the left-out image. Fig. 13 shows re-projections and real

images. Fig. 14 shows the re-projections and a recovered

3D density of another specimen from the dataset [46].

8. Discussion

This work derives a framework for a 3D statistical analy-

sis of an ensemble of live organisms, using a single shot per

specimen. Existing single-view imaging systems produce

data that is utilized for a statistical 3D recovery. A size dis-

tribution is obtained, which is of high scientific importance.

Our 3D-POP approach relies on Fourier analysis: it works

under two conditions: (a) a linear or linearized model (b)

line-of-sight integration. The conditions are met in weak

refraction and paraxial propagation.

The approach builds upon SPR, with some differences:

I. Cryo-EM suffers from extremely low SNR (each

molecule is destroyed by small irradiation).

II. Unlike molecules, organisms within the same class ex-

hibit large variations in 3D structure, particularly scale.

III. Live (unfrozen) specimens are difficult to control.

Currently, our approach does not explicitly recover com-

plex shape variations. However, simulations (Sec. 6) and

real data analysis (Sec. 7) indicate recovery robustness. Fu-

ture work may extend this concept to recovery other mor-

phological variations [26], thus retrieving richer statistics.

Organisms imaged by systems [1,15] in a large volume

of water are typically randomly oriented in 3D. However,

some systems [42] use fluidic flow which aligns organisms

with a high aspect ratio. Rotation about a single axis can

reduce the unknown degrees of freedom.

Our analysis could be valuable for taxonomy and clas-

sification. Furthermore, in fields where labeling requires

experts - unsupervised clustering and size-distribution

estimation can improve and expand biological databases.
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